

Volume 22 – December 2005

Abstract Review, Excerpts - A Reference Monitor for Workflow
Systems with Constrained Task Execution; Specifying and
Enforcing Constraints in Role Based Access Control

Jason Crampton, Information Security Group
Royal Holloway, University of London

[Continued from previous RBAC Newsletter issue]

ENFORCING CONSTRAINTS IN A ROLE-BASED SYSTEM

A request is an interaction by a user with a system that potentially results in a
change to the configuration or state of the system. In a role -based context, such
requests include: a request to invoke permission; a request to activate a role or to
establish a session; attempts to assign a user or permission to a role; and changes
to the role hierarchy.

The Enforcement Context of a Constraint

Constraints can be enforced by either the configuration or the state, or the state
history of a system. These are usually referred to as static, dynamic and
historical constraints, respectively.

A brief description of a typical role constraint requires that no user be assigned
to both r1 and r2 (Where r1 and r2 are roles). When this is a static constraint,
then it is satisfied if for all users. When describing a dynamic role constraint
however, the constraint is satisfied if (for all users) when no user has activated
both r1 and r2, such as in the previous example of the ward clerk and the charge
nurse (Note that it is possible in this case for a user to be assigned to both roles,
but the user will not be permitted to activate both in the same session.). It should
be noted that it is difficult to interpret <the dynamic role> as a historical
constraint. Should it mean that once the user has been assigned to r1 (say), then
the user can never be assigned to r2. Alternatively, should it mean that once the
user has activated r1, then u can never activate r2? These interpretations of
enforcement context could be classified as static historical and dynamic
historical, respectively. To the author’s knowledge, no such distinction exists in
the literature. A detailed discussion of these constraints and whether we need
additional historical interpretations of them is beyond the scope of this paper.
Dr. Crampton believes that the dynamic historical interpretation is likely to be
more meaningful in practice, and is the interpretation he adopts in this paper. It
is easily seen that the enforcement of a static authorization constraint implies that
the corresponding dynamic constraint is enforced.

Observations

Separation of duty is not a complicated concept!

Research papers on separation of duty in computer systems regularly describe
constraints that are defined in terms of users and in terms of roles. It is not
immediately obvious when these constraints are to be specified.

VHA/IHS RBAC TF Chair
Robert O’Hara, MD

Robert.Ohara@med.va.gov

VHA Deputy Chief
Architect

RBAC Project Manager
Steve Wagner

 Steve.Wagner@med.va.gov

VHA Security Architect
RBAC Architect

Mike Davis, CISSP
Mike.Davis@med.va.gov

VHA Security Architect

RBAC Architect
Ed Coyne, PhD

Ed.Coyne@med.va.gov

VHA Security Analyst
Sepideh Khosravifar

Sepideh.Khosravifar@va.gov

RBAC Project Lead
Suzanne Webb

Suzanne.Gonzales-Webb@va.gov

Inside this issue:

? Abstract Review and
Excerpts – Reference
Monitor for Workflow
Systems with
Constrained Task
Execution – Part II

? RBAC Taskforce –

Meeting Update

? Upcoming Meetings

www.va.gov/RBAC

Volume 32 – October 2006

 www.va.gov/RBAC

Separation of duty requirements articulate circumstances that would lead to the
violation of business rules. A violation could be regarded as the occurrence of a
set of events that contravene the business rules. In other words, to specify a
separation of duty constraint we merely need to specify one-by-one the
“undesirable” set or sets of events (per permission or role as the case may be),
and to enforce a constraint we must ensure that all the events specified in that set
cannot occur.

There are certain separation of duty constraints that could be hard-wired into a
healthcare application – such as no user can be assigned as both a ward clerk and
a charge nurse. It is the users of an application who will be required to specify
separation of duty constraints.

User Permission Constraint

The work of Sandhu on transaction control expressions [1] assumed it was
possible to define a life cycle for transient objects. For example: In the case of
an RN receiving narcotics from the inpatient pharmacy, the life cycle (for the
narcotic transfer) begins when the RN receives the narcotics and ends when it is
logged into the floor. That is, certain permissions are necessarily only invoked a
certain number of times. Hence, once permission ceases to become meaningful,
it can be deleted from any blacklist it belongs to.

The Constraint Monitor

Dr. Crampton assumes the existence of a constraint monitor that is responsible
for enforcing authorization constraints. Each constrained request could
potentially cause a violation of an authorization constraint. Hence each instance
of a constrained request is passed to the constraint monitor. The constraint
monitor checks whether granting the request would violate an authorization
constraint and takes appropria te action. Note that it is possible to enforce a static
constraint by considering the configuration of the system. In other words, we
only require blacklists for historical authorization constraints. Similarly, it is
possible to enforce a dynamic constraint by considering the state of the system.
For example, suppose a user attempts to start a session by activating two roles r1
and r2, which form a dynamic separation of duty constraint. Then the security
monitor would prevent the session from starting.

Hence we envisage that there could be several different classes of constraint
monitors derived from some abstract constraint monitor class. These could
include a role hierarchy monitor class, a user-role assignment monitor class, a
permission-role assignment monitor class, a session monitor class and monitor
classes for specific types. Each monitor will maintain a list of authorization
constraints that are relevant to that monitor.

Blacklist: Enforcing historical constraints

In order to enforce a historical authorization constraint it may be necessary to
deny certain requests.

Upcoming Meetings

? November HL7

Educational Summit
 November 7-9, 2006
 Lynnwood, WA

? INCITS Workshop on

Cyber Security SC 27
 Oct 31 - Nov 1, 2006
 Singapore

? ONC (ONCHIT)

American Health
Information Community
Meeting
October 7, 2006
Washington, DC

? OASIS Adoption Forum

October 28-29, 2006
 London, United Kingdom

? World Innovation &
 Technology Conference

November 1-3, 2006
Washington, DC

? HL7 Educational

Summit
November 7-9, 2006

 Lynnwood, WA

? ASTM Committees E31

November 12-14, 2006
Atlanta, GA

˜

 www.va.gov/RBAC

One possible approach to enforcement is to employ a historical record [1, 2, 3] of
all previous invocations of permissions and to consider this record whenever a
request to invoke a permission is made. The Chinese Wall model1 defines the
history matrix for precisely this purpose. It is our belief that approaches of this
nature will not scale well to large-scale applications. We employ a different
approach to the enforcement of historical constraints by dynamically changing
the requests that can succeed. Hence, in order to enforce a constraint, we create
a blacklist – a dynamic access control structure that contains constrained
requests. When a constrained request occurs the relevant blacklist is consulted.
If the request belongs to the blacklist, the request is denied; otherwise, the
request is referred to the role -based reference monitor.

EVALUATION AND RELATED WORK
Specification. The specification scheme outlined in Dr. Crampton’s paper has
its basis in our set-based approach to conflict of interest policies [4]. It is similar
to the model developed by Jaeger and Tidswell [5] which uses set predicates to
define separation of duty constraints. The scheme Dr. Crampton proposes is
considerably simpler syntactically than their scheme because he makes no
attempt to define the conditions that must be met for the constraint to be
satisfied. Indeed, with the exception of the work of Simon and Zurko [3], most
previous specification schemes for separation of duty have followed this
approach and used some fragment of first-order logic as the specification
language. Crampton believes that it is well understood when a separation of
duty constraint is viola ted and that including the conditions that would cause a
violation simply increases the number of predicates and functions required to
specify the constraints.

There are certain separation of duty constraints that can be specified in RCL
20002 [2] and in Jaeger and Tidswell’s model that we cannot specify using
Crampton’s approach. Broadly speaking these are constraints where it is not
sufficient to iterate over the constraint set for each element of the scope. It is not
possible to express the following separation of duty requirement: given two users
u and v and two roles r and s, we do not want either u or v to be assigned to both
roles or u to be assigned one role and v assigned to the other. Such a constraint
is potentially useful in preventing collus ion between groups of users. A little
thought shows that such a constraint defines the following constrained sets:

{(u, r), (u, s)}, {(v, r), (v, s)}, {(u, r), (v, s)} and {(u, s), (v, r)}.

In other words, we could introduce a fourth parameter in our definition of
constraint which determines the “direct product” semantics of the constraint: that
is, whether we should iterate over both the scope and the constraint set or simply
over the constraint set (as we currently do). (The Jaeger and Tidswell scheme
includes eight different ways of iterating through the various components in a
constraint.)

1 The Chinese Wall model is a combination of free choice and mandatory control. It
can be combined with DAC policies.
2 RCL 2000 (For Role -Based Constrains Language 2000, pronounced Rickle 2000) is
the specification language for role -based authorization constraints [2].

˜

RBAC Newsletter

ATTN: Suzanne Webb
RBAC Project Lead

10260 Campus Point MS-B1E
La Jolla, CA 92121

Or e-mail:

Suzanne.Gonzales-Webb@va.gov

 www.va.gov/RBAC

Dr. Crampton has also made an assumption that he did not need to consider
order-dependent historical constraints. However, if it proved that such an
assumption were not valid, it should be possible to interpret the constraint set as
a constraint list. When an object is instantiated for which such a constraint is
defined, we enter all elements of the list except the head of the list (the next
event that should be executed) into the appropriate blacklist(s). Once that event
occurs, the next element in the list is removed from the blacklist(s). Of course,
this scheme is only applicable to linear workflows; if the workflow branches, we
need to model a partial order. It is not immediately obvious how such workflow
constraints could be specified within his proposed scheme.

Enforcement. Dynamically modifying access control structures in order to
reflect previous access requests or execution paths has received attention in
several recent research papers. Edjlali et al. proposed a dynamic approach to
controlling the access rights of mobile code in order to enforce requirements of
the following form: if an application has accessed a file on the local host system,
then the application cannot open a socket [6]. More recently Abadi and Fournet
have proposed an alternative to the “stack walk” semantics for virtual machines
using the intersection of access rights that have been available to each process
[7]. Crampton has used these ideas as a starting point to develop the idea of a
blacklist, which dynamically limits the permissions available to users (and
possibly roles). The concept of a blacklist also employs the concept of negative
permissions , which have received little attention since their introduction to the
role-based access control literature [8].

The enforcement model Dr. Crampton defines in this paper can only enforce
constraints in which the constraint set has no more than two elements. We do
this because it is not possible to implement blacklists with a simple semantics
otherwise. To see this, consider the constraint (U, {p1, p2, p3}, h) and assume
that none of the three permissions have been invoked by user u. Once u invokes
the permission p1, say, which of the remaining two permissions should be
entered in the blacklist? Clearly, we could enter both p2 and p3 into the
blacklist, but this would be too restrictive.

The alternative is to keep a historical record of all access requests and to enter
either p2 or p3 at some point in the future. Crampton prefers not to keep a
historical record because he believes that such an approach will have
unacceptable performance overheads. Therefore, he chooses to impose this
upper bound on the cardinality of the constraint set in historical authorization
constraints. It should be noted that most existing approaches to separation of
duty only consider constraint sets with precisely two elements, the exceptions
being the RCL 2000 specification language [9] and the work of Simon and Zurko
[3].

SUMMARY AND FUTURE WORK
Dr. Crampton has developed a simple set-based specification scheme for
authorization constraints in role -based access control systems. He has also
suggested an enforcement model for a restricted subset of this scheme. To the
author’s knowledge, this is the first attempt at defining a specification and

˜

RBAC Newsletter

ATTN: Suzanne Webb
RBAC Project Lead

10260 Campus Point MS-B1E
La Jolla, CA 92121

Or e-mail:

Suzanne.Gonzales-Webb@va.gov

 www.va.gov/RBAC

enforcement model for authorization constraints since the work by Simon and
Zurko [3]. Crampton believes that his specification is easier to understand than
their scheme and that this enforcement model, which does not rely on
maintaining a historical record of all previous system activity, is likely to have
lower performance overheads, particularly for large-scale applications. There
are several interesting directions for future work, some of which have been
alluded to in the body of this paper. Crampton would like to investigate whether
constraint sets with an arbitrary number of elements can be enforced in a simple
way. Dr. Crampton would also like to find an intuitive scheme for defining
different combinations of elements in the constraint scope and the constraint set
in order to increase the range of constraints that his scheme can support. The
most ambitious goal is to develop abstract Java classes, constraint and monitor,
that implement our constraint specification and enforcement schemes. The
ultimate objective being, to develop a generic middleware authorization
constraint engine that can be instantiated by application developers and systems
administrators to support enterprise-wide heterogeneous constraint authorization
policies.

RBAC96
Dr. Crampton developed the material in this paper in the context of RBAC96, the
most widely known role -based access control model [6].

Use of this article was by permission of the author, Jason Crampton.

REFERENCES

[1] Sandhu, R. Transaction control expressions for separation of duties. In
Proceedings of 4th Aerospace Computer Security Conference (Orlando, Florida,
1988), pp. 282–286.
[2] Brewer, D., and Nash, M. The Chinese Wall security policy. In Proceedings of
1989 IEEE Symposium on Security and Privacy (Oakland, California, 1989), IEEE
Computer Society Press, pp. 206–214.
[3] Simon, R., and Zurko, M. Separation of duty in role-based environments. In
Proceedings of 10th IEEE Computer Security Foundations Workshop (Rockport,
Massachusetts, 1997), pp. 183–194.
[4] Crampton, J., and Loizou, G. Structural complexity of conflict of interest
policies. Tech. Rep. BBKCS-00-07, Birkbeck College, University of London, 2000.
[5] Jaeger, T., and Tidswell, J. Practical safety in flexible access control models.
ACM transactions on Information and System Security 4, 2 (2001), 158–190.
[6] Edjlali, G., Acharya, A., and Chaudhary, V. History-based access control for
mobile code. In Proceedings of Fifth ACM Conference on Computer and
Communications Security (1998), pp. 38–48.
[7] Abadi, M., and Fournet, C. Access control based on execution history. In
Proceedings of 10th Annual Network and Distributed System Security Symposium
(2003). To appear.
[8] Sandhu, R., Coyne, E., Feinstein, H., and Youman, C. Role-based access control
models. IEEE Computer 29, 2 (1996), 38–47.
[9] Ahn, G.-J., and Sandhu, R. Role-based authorization constraints specification.
ACM Transactions on Information and System Security 3, 4 (2000), 207–226.

˜

RBAC Newsletter

ATTN: Suzanne Webb
RBAC Project Lead

10260 Campus Point MS-B1E
La Jolla, CA 92121

Or e-mail:

Suzanne.Gonzales-Webb@va.gov

 www.va.gov/RBAC

RBAC Taskforce – Update

The next RBAC Taskforce meeting call will be held October 18th, 2006 -
Wednesday at 1300CT / 1100PST / 1200MT / 1400EST; a meeting update has
been sent out to the current participants. If you would like to be a part of the
Task Force please contact Suzanne Gonzales-Webb for more information, thank
you.

The RBAC Taskforce will continue discussions surrounding the definition of
constraints on current Permission Catalog and Roles, as well as an update on the
initiation of RBAC incorporation into the VA re-engineering projects. Current
Task Force Members will be contacted with additional materials in preparation
for the meeting.

˜
Role-Based Access Control is critically important to the security aspects of the
VA and other healthcare organizations. There is a growing management and
security demand for RBAC to be implemented in healthcare systems.

RBAC grants rights and permissions to roles rather than individual users. Users
then acquire the rights and permissions by being assigned to appropriate roles.
By grouping individuals with other individuals who have similar access rights,
RBAC can provide significant security management efficiencies.

The latest RBAC Documentation additions and prior RBAC Newsletters can be
found on the RBAC Website.

˜

The RBAC Newsletter will now be published quarterly instead of monthly.
Please be on the lookout for the next issue due January 2007!

˜

RBAC Newsletter

ATTN: Suzanne Webb
RBAC Project Lead

10260 Campus Point MS-B1E
La Jolla, CA 92121

Or e-mail:

Suzanne.Gonzales-Webb@va.gov

